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TWO-SPATIAL DIMENSIONAL ELASTIC WAVE PROPAGATION
BY THE THEORY OF CHARACTERISTICS

MOCHE Ziv

McDonnell Douglas Astronautics Company, Western Division
Santa Monica, California

Abstract- -A method is presented by which the theory of characteristics is extended to include elastic waves in
two-spatial dimensions. This method makes use of Hadamard’s work on surfaces of discontinuity in the dependent
variables and their derivatives.

A model is developed for a surface propagating in a linear elastic, isotropic, and homogeneous medium.
Velocities and stresses of the material particles are assumed to be discontinuous in their first partial derivatives
across the propagating surface. A transformation is used for this model by which the relevant discontinuity
relations from Hadamard’s theory are applied to the dynamical field equations. Application of this transformation
results in a system of necessary dynamical conditions which then lead to the derivation of the characteristic
equations for two-spatial dimensions.

1. INTRODUCTION

THE phenomenon of transient wave propagation in solids has created increased interest
in recent years. Solutions have been sought to wave problems, particularly those which
arise in fields of geophysics and space technology. These problems generally require the
treatment of finite bodies subjected to concentrated impulsive loads on one or more of
their boundaries. Waves generated under these conditions are inherently multi-dimensional.

For a wide range of practical cases multi-dimensional systems can be narrowed down
to two-spatial dimensional waves. In the past, transform techniques were applied to the
solution of two-spatial dimensional wave propagation problems in solids. Only few
boundary value problems have been solved using these techniques and then only in the
case of linear materials [1].

Recently, the theory of characteristics has been successfully applied to two-spatial
dimensional dynamic elasticity problems [2] and [3]. The characteristic surfaces and
characteristic equations were derived by the conventional method. The conventional
directional derivative approach, used extensively in the past to solve hydrodynamic
equations, is summarized and clearly presented in Reference [4].

The motivation for this study is to establish a method by which the characteristic
surfaces and the characteristic equations will be derived by the employment of kinematical
conditions which exist across a surface of discontinuity.

In his work on surfaces of discontinuity, Hadamard developed a theory which presents
these surfaces as the loci of discontinuities in the dependent variables and their derivatives
[5]. In view of this model, kinematical conditions were derived by Hadamard for the
function and its derivatives in reference to space and time respectively, which are denoted
as Hadamard’s discontinuity relations. Since Hadamard’s discontinuity relations were
derived on kinematical basis only, they seem to be applicable to a wide variety of con-
stitutive equations. This work was extended by Levi-Civita [6], T. Y. Thomas [7], and is
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also presented in References [8] and [9]. Therefore, it seems expedienttoemploy Hadamard’s
work in the effort to develop a suitable method for the solution of the two-spatial dimen-
sional wave problems in solids.

The study which follows describes these efforts. Hadamard’s theory is applied to a
wave surface across the first partial derivatives of the velocities and stresses are discon-
tinuous, while these dependent variables themselves are continuous. The discontinuity
relations are reformulated in order to reduce the basic dynamical field equations to a
system of dynamical conditions. The objective of this analysis is to present the dynamical
conditions as a set of equations equal in number to the discontinuous first partial deriv-
atives. From the dynamical conditions the differential equations governing the propagation
of discontinuities on the wave surfaces are derived. These characteristic equations are
derived with reference first to Cartesian and then to cylindrical coordinate systems, thus
allowing their application to a wide range of problems.

The investigation described in this study is confined to two-spatial dimensional wave
propagation in a linear elastic, isotropic, and homogeneous material.

2. BASIC DYNAMICAL FIELD EQUATIONS AND THE MONGE CONE

The basic dynamical field equations which govern the deformation in the medium are
written below with respect to the Cartesian coordinate system. Total differentials of the
dependent variables are then combined with the basic dynamical field equations to produce
a characteristic surface.

The basic dynamical field equations for linear elastic, isotropic and homogeneous
material where plane strain is prevalent are
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where
p = density

U and W = particle velocities in the x and z directions respectively
0.x, 0, and a,, = the normal and shear stresses in the x, z plane
x and z = Cartesian coordinates
t = the time dimension

wand A = Lamé’s constants.
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In addition to the basic dynamical field equations (1) through (5), total differentials
for the dependent variables are necessary to produce an integral surface as evident from
the following: Let a function f stand for any of the dependent variables o,,, 6,,, 0,,, U,
and W, and let fand its first partial derivatives df/0x, df/0z, and df/Gt be continuous in
certain regions in the medium which occupies the space x, z, t. It is known that at each
point in the medium, where the basic dynamical field equations are defined, there exists
a Monge cone [10]. The Monge cone is formed by varying the first partial derivatives
0f/0x, df/0z, and 0f/dt, which are algebraically related by the basic dynamical field equations.
For a surface f = f(x, z, t) to be an integral surface of the basic dynamical field equations
its tangent element should touch the Monge cone at each point in the field defined by the
equations. The point (x +dx, z+dz, t+dt, f+df) lies in a tangent element to the Monge
cone at the point x, z, t, f if df = (9f/dx) dx +(3f/dz) dz +(df/ot) dt [10]. Consequently, the
total differentials of the dependent variables must be introduced. Equations (1) through
(5) and the total differentials of the dependent variables are combined to yield the following
equations:
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This system of differential equations will be referred to as the dynamical field equations.

The dynamical field equations (6) through (10) are shown in the section ““Characteristic
Condition” to possess five real and distinct integral surfaces. Consequently, the dynamical
field equations are of the hyperbolic type and their integral surfaces are known [10] as
characteristic surfaces.

A characteristic surface starts to form when a point Py(x,, z,, to) in the medium, where
the dynamical field equations are defined, is excited by one or more of the dependent
variables. To show the formulation of an arbitrary characteristic surface by its tangent
elements for an arbitrary point Py(x,, z,, to), the Monge cone with P, as its apex is con-
sidered (see Fig. 1). Since each of the tangent elements of the characteristic surface must
touch the Monge cone at point P,, these elements will form a pyramid around the Monge
cone. The envelope of this pyramid is the characteristic surface. The generators of this
envelope coincide with the pyramid along curves which are formed by the intersection
of the tangent elements. These curves are known as the bicharacteristic curves. Since the
bicharacteristic curves are formed by tangent elements with different orientations, dis-
continuities may occur in the first partial derivatives across the bicharacteristic curves.
Therefore, the first partial derivatives on the characteristic surface are indeterminate.
Accordingly, the characteristic surfaces are surfaces of discontinuity in the first partial
derivatives of the dependent variables. When point P, is excited by given initial conditions
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Fi1G. 1. Characteristic surfaces and bicharacteristic curves.

which are functions of time, the surface discontinuity is then propagated in the space
X, z, t as shown in Fig. |, and so are the indeterminate first partial derivatives along the
bicharacteristic curves. The solution surface is then found by the propagation of these
indeterminate first partial derivatives from the initial conditions along the bicharacteristic
curves.

The objectives now are first to depict the surface of discontinuity as a wave surface
and then to establish the dynamical conditions for the indeterminate first partial derivatives.
The dynamical conditions are to be established from the dynamical field equations (6)
through (10). From the dynamical conditions a characteristic condition is to be found
and the latter should yield the discontinuity surfaces and their bicharacteristic curves
along which the indeterminate first partial derivatives are propagating. Next, the character-
istic equations which relate the dependent variables along the bicharacteristic curves are
to be derived. Once these objectives have been reached, the propagation of the solution
surface can be found when a point 1s excited by given nitial conditions. The following
sections are devoted to these objectives.

3. WAVES AS SURFACES OF DISCONTINUITY

Analytical tools are now being sought to treat waves as surfaces of discontinuity.
The discussion in the end of the previous section described the geometrical meaning and
the formulation of surfaces of discontinuity from the dynamical field equations (6) through
(10). With this notion, a model is defined here where waves are depicted as surfaces of
discontinuity. Once this model is defined, the theory on surfaces of discontinuity based on
Hadamard [5] is introduced to present the discontinuity relations which hold across the
wave surface.
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The model considered is a surface ®(x, z, t) = 0 in the medium. Two basic conditions
are imposed on this surface:

(a) 1t is required of the surface to present the locus of possible discontinuities in the

first partial derivatives of the dependent variables appearing in the dynamical field

equations. The dependent variables themselves are assumed to be continuous every-
where, but differentiable only in regions which are in the rear and in the front of the
discontinuity surface.

{b) It is required of this surface of discontinuity to present a wave surface in the sense

that while moving in the medium it affects different material particles as it moves.

From these basic conditions and from the dynamical field equations (6) through (10) it
follows that the quantities 0U/0x, 0U/0z, dW/ox, 0W/0z, and o;;; across the wave surface
® are assumed to be discontinuous, but p, ¢;;, U and W are assumed to be continuous.

Rather than a direct treatment of equations (6) through (10), which implies a direct
dynamical analysis, it is first desired to confine the analysis to the kinematical conditions
for the indeterminate first partial derivatives across the wave surface.

In his work on surfaces of discontinuity Hadamard developed Kinematical conditions,
which are also known as discontinuity relations, for the dependent variables and their
derivatives across the surface. These analytical tools, based on Hadamard, are adapted
here to formulate the proposed wave surface model. Corresponding to the basic conditions
imposed on the surface of discontinuity, the relevant Hadamard’s discontinuity relations
[5] are written as follows:

. ou oU ow

4 ‘
[ﬁ;}azm and [0,] = [U) = [W] = [5] = 0 (11)

where, if f stands for any of the dependent variables (see Fig. 2), then [ f,] denotes the dis-
continuity in the first partial derivative across the wave surface ®(x, z, ) = 0. The quantity
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Fi1G. 2. Wave as a surface of discontinuity ®.
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[f.] is defined [7] to be the value of the first partial derivative on the rear of the wave surface
minus its value on the front of the wave surface, i.e.

[fil= S _f.i

The value of f;
on the rear of ®

The value of f; ( 12)

on the front of ©

dj, 0, and ¢, are arbitrary functions related to g;;, U and W respectively. n, and n, are
the Cartesian components of the unit normal vector n to the wave surface ®, such that

nZ+n? =1 let n,=cos(n,x) and n, = sin(n, x). (13)

To summarize, a wave surface was considered across which discontinuities may occur
in the first partial derivatives of the dependent variables. For this wave surface model,
discontinuity relations, based on the work of Hadamard, are provided. It is now required
to incorporate these discontinuity relations into the dynamical field equations so that the
dynamical conditions for the indeterminate first partial derivatives can be obtained. This
is done in the next section where a transformation is used for this purpose.

4. DYNAMICAL CONDITIONS

Dynamical conditions for the indeterminate first partial derivatives are derived in this
section. To present these conditions as equations which relate the indeterminate first
partial derivatives in a compatible manner, a transformation is used by which the dis-
continuity relations are applied to the dynamical field equations.

The discontinuity relations expressed in equations (11) are now transformed to a form
where first partial derivatives appear with respect to the normal of the wave surface.
Consequently, equations (11) are rewritten in the following form [8]:

= | Ll (14
n

or, by definition (12) equation (14) can further be written as follows:

o
The value of f; on the = [é;] n; +-f:l

rear of the wave surface

i

The value of £, on the
front of the wave surface

(15)
where the value of f; in front of the wave is finite and known from prescribed conditions.
This is not the case, however, for the f; on the rear of the wave surface. The first partial
derivatives on the rear of the wave surface are created as the wave surface is being formed
by the intersection of its tangent elements. Therefore, the f; on the rear of the wave surface
is considered here to be indeterminate. Equation (15) is rewritten as follows::

of
Indeterminate lié;:lni +f:l .

value of f;

i

(16)

The analysis done so far has been confined to kinematical conditions for the indeter-
minate first partial derivatives of the dependent variables on the wave surface. These
kinematical conditions, expressed in equations (16) are now applied to dynamical field
equations. In accordance with Section 2, the first partial derivatives in the dynamical
field equations correspond to the left-hand side terms of equations (16) across a wave
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surface. Therefore, these derivatives are replaced by the right-hand side terms of equations
(16) and equations (6) through (10) yield the following relations:
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which is recognized as the common term in the system of equations (17) and (18).
Rewriting equations (17) in matrix form gives
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Hence, equation (20) presents a system of five cquations which relate five first partial

derivatives o i ) .
(-‘, U ¢ w ‘A(fxx ['azz
n | cn | n | _in

of the five dependent variables U, W, o,,, 6., and .. The system of differential equations
{20) is then denoted as the dynamical conditions, since it is from these relations that the
wave surfaces and the characteristic equations will be derived.

In order to derive the wave surfaces and then the characteristic equations which hold
on these surfaces from the dvnamical conditions, the following conventional approach is
attempted. To solve any of the unknowns, say [°U/Cn], in equation (20), a ratio is needed
where its denominator is the determinant of the coefficients and its numerator is the
determinant where the determinant’s first column is replaced by the right-hand column of
equation (20). However, since it is required of [?U/¢n] to be discontinuous, the denominator
is made to vanish. Furthermore, since it was established that this discontinuity takes place
across the wave surface, it can be concluded that by equating the denominator to zero the
wave surface can be determined. Therefore, the determinant of the coefficients when equated
to zero is denoted as the characteristic condition. On the other hand, it is also required of
the discontinuities to be related 1n order to define the tangent elements (refer to the section
“Basic Dynamical Field Equations and the Monge Cone”) of the wave surface. This is
established when the numerator s also made to vanish. The numerator, which is equated to
zero, and the equations for the characteristic surfaces will yield the characteristic equations.

In view of the above description of the dvnamical conditions, the following steps are
taken to determine

{a) the wave surface {or surfaces) from the characteristic condition and the generators

of the surfaces, which are the bicharacteristic curves {this is done in the next section);

(b) the characteristic equation (or equations) which hold along the bicharacteristic

curves (this is done in the section “*Cartesian Characteristic Equations™).

(‘\‘O.:X

and

on

5. CHARACTERISTIC CONDITION AND BICHARACTERISTIC CURVES

Once the dynamical conditions for the indeterminate first partial derivatives have been
established, it is possible to proceed to determine the wave surfaces from the characteristic
condition. The bicharacteristic curves are then derived from these characteristic surfaces.

The determinant of the coefficients of the matrix (20) is equated to zero in order to
establish the characteristic condition, and is expanded to yield five distinct and real roots
as follows:
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In order to interpret the meaning of these roots, a wave velocity g is defined as follows:
Let @ be the wave surface and let a material particle P be on this surface at time ¢.
At time ¢t + dt the normal n at P to ®(¢) will intersect the same wave surface at a different
material particle P’ (sece Fig. 3). Hence, the velocity g of the wave surface @ at P at the in-
stant ¢ is defined to be [5]
_ PP
o de

or the wave surface speed is

g= (26)

where it is apparent from Fig. 3 and from equation (13) that dn may be presented by vector
addition as

dn =n,dx+n,dz (27)
or

dx dz
= n,— —.
g ‘dt+n2dt

0]

FiG. 3. The wave surface @.

This expression is identical to the relation expressed in equation {19). Therefore, it is clear
that G is identical to g, which is the propagation speed of the wave surface. This is also
consistent with the dimensions of G [equations (21) through (24)]. Furthermore, from
Fig. 3 it is also apparent that

(dn)* = (dx)? +(dz)?
or in view of the definition (26) that

(dx)? +(dz)? = G¥dr). (28)
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Equation (28) defines the Monge cone [10] (see Fig. ). Each wave surface through the apex
of this cone touches this cone along the bicharacteristic curves. The bicharacteristic
curves are easily found by examining equation (28) in Fig. 4.

In view of equation (28) and Fig. 4 it is apparent that the bicharacteristic curves may
be presented as follows:

dx = Gceosfdt
(29)
dz = Gsin 6 dt
or dx = Gn dt
dz = Gn,dt.
dx
o |
]
I
dz OQ} :
|
|

Fi1G. 4. Representation of equation (28).

The next task is to derive the characteristic equations, which relate the dependent
variables along these bicharacteristic curves. Before this is done, however, some conclusions
should be made as to the dynamical nature of the obtained wave speeds as expressed in
equations (21) through (25).

First, it is intended to examine the nature of equation (25), i.e. G5 = 0. For this purpose
the equations of motion (6) and (7) are rewritten for the wave surface, in which case they
include the discontinuity notations and the relations dx/dt = Gn, and dz/dt = Gn,
(see Fig. 3) as follows:

00, N 00, __GﬁU G@U N dUu
ox oz |~ PO ax TP A TP
7y I P e KA s L e 4
% oz |~ TP e TP e TP ar |

Obviously, since U and W are assumed to be continuous across the wave surface then

2]-[]-

When zero is substituted for G in the above equations, it can be seen that this root represents
a front where static deformation takes place.

In order to interpret the significance of the roots G? = (4 +2u)/p and G* = u/p the
discontinuity relations (11) are applied to equations (6) through (10) which are combined
to yield the following two relations:

nx('l + .u) (nxéx + nzaz) = (sz - .u)éx
n(A+u)(ned +n.0,) = (pG* — )d, .

(30)
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When A+ 2u/p is substituted for G? in equations (30) the following features are obtained:

nnd,+n,0,) = 9,
(31)
nz(nz(sz + nxéx) = 52 N
These relations imply that the vector 8 is parallel to vector n or that the material particle
at the wave surface moves parallel to the propagating wave. Also, the linearized vorticity
at the wave surface is 3 ([0U/0z] — [6W/0x]). In view of relations (11)

ou ow
%] [5e] -oa-om

but as a result of the relations (31) the vorticity at the wave surface vanishes. A wave charac-
terized by these features is known as the longitudinal wave, which propagates with speeds
expressed in equations (21) and (22). G, and G, are now replaced by the notations G} and
G respectively where the subscript L refers to longitudinal waves. This observation as
well as the following one are restatements of T. Y. Thomas [11].

The substitution of u/p into equation (24) yields the following relation:

6, +n,8, = 0 (32)
which implies
v oW _,
x 0z

Thus, the dilatation at the wave vanishes. Also, in view of relations (30) the term n,6, + 1,9,
represents a scalar which may be written as a dot product. In conjunction with relation (32)
this term becomes n .8 = 0. A wave consisting of these features is known as the shear wave
which propagates with the speeds expressed in equations (23) and (24). The speeds G,
and G, are now replaced by the notations G5 and Gy respectively where the subscript S
refers to shear waves.

Thus far, the wave surfaces, their speeds of propagation, and their bicharacteristic
curves have been established. In the next section the characteristic equations which hold
along the bicharacteristic curves and on the wave surfaces will be derived.

6. CARTESIAN CHARACTERISTIC EQUATIONS

In this section the characteristic equations are derived from the dynamical conditions.
As was described in the section “‘Dynamical Conditions,” the procedure to obtain the
characteristic equations is as follows: Each column in the coefficient determinant of
equation (20) is replaced consecutively by the column on the right-hand side. The deter-
minant is then made to vanish for each such replacement. The expansion of the determinant
yields the desired relation.

The characteristic surfaces as expressed in relations (21) through (25) are substituted
for G. The result is five distinct characteristic equations which relate the five dependent
variables o,,, 7,,, 6,,, U and W along the bicharacteristic curves expressed in equation
(29). These characteristic equations are :

nngz + n:chxx + 2nxanzx - GZ (anW + anU) =0 (33)



1146 Mocuk Ziv

along
dx = G/n,dt
dz = G/ n, dt
where
G; = +\/ (/t)z‘u)
niR_.+niR  +2nnR .G (n.Ry+nRy) =0 (34)
along
dy = G, n dt
dz = G, n_dt
where
G, = —\/ (”i*pzl)
nnR..—~ R )+(1-2nA)R,, — G5 (nRy~n,Ry) =0 (35)
along
dx = GJn, ds
dz = Ggn.dt
where
-l
P
nn(R..— Ry +(1-2n0)R,. — G (nRy ~n,Ry) = 0 (36)
along
dx =Ggn,dt
dz = Ggn, dt
where
o ==l
P
[An2 = (G4 20nZIR, + [An2 — (A+2pnZIR,. +4n.n(A+ R, = 0 (37)
along

where the R’s are expressed in equations (18) when n, dx/dt+n,dz/dt is replaced by the
relevant G.
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The characteristic equations (33) through (37) derived here are in complete agreement
with the equations derived by Clifton [2]. Also, it can be shown that equations (33) through
(37) contain upon reduction known one-spatial dimensional cases which require Cartesian
characteristic equations. The next section is devoted to the derivation of the characteristic
equations in the cylindrical coordinate system.

7. CYLINDRICAL CHARACTERISTIC EQUATIONS

This section is presented in order to accommodate many practical problems where the
cylindrical coordinate system is advantageous. A system of five differential equations which
relate the five unknown functions o,,, o4y, 6,9, U, and U, along the bicharacteristic curves
is to be derived here. The principles of the theory and the derivations are analogous to the
analysis used to derive equations (33) through (37), and reference should be made to the
previous sections.

The basic dynamical field equations for linear elastic material where plane strain is
prevalent are

86 1 50,0 O, Ggg FU

Freat TP

1 Oogy (o ero _ U,

rao o r Par
oo oU, U, 18U, . au
LY had ST NN r
it ( ar r r 00 +26 or
dog _ .[0U, U, 18U, U, 13U,
7‘*( ) R P

00’,3_ (aUg Ug 1 (qu

ot or r r 00
where
U, and U, = radial and tangential displacements respectively
a,,, Gge a0d 0,4 = stress components in the r, 6 plane
r and 0 = plane cylindrical coordinates

t = the time dimension.

The kinematical conditions expressed in equations (16) are used here where the com-
ponents of the unit vector normal to the wave surface are n, and np such that n2 +n3/r* = 1.

By the same steps as for the Cartesian coordinate system, five characteristics are obtained
which are identical to equations (21) through (25). The bicharacteristic curves may be
found simply by transferring equation (28) into cylindrical coordinates, namely, (dr?)+
r3(d@)®> = G*(dt)%. The bicharacteristic curves are dr = n,G dt and d@ = ny/r? G dt. Now,
following similar steps (as described in the section ““Cartesian Characteristic Equations™)
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one obtains the desired five characteristic equations along the bicharacteristics, which are
the following equations.

2

n nn n
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2 2
[lnf —:’—Z(i + 2#)]Rr,+ [/1—— nr(A+ 2#)]

(42)
1 n2 5 U,
= U, ;/1(/1 +2u)—4un;(A+p) | + 4~r—n,no/t(/1 + 1)
along
dr=0
where
e
(43)
-Jli
0
and where

du, ou, 14U, | do, 100,
ar "2 op

=, 3V (s 1 0Us | 1300w 00w
Ve =P TPV e ™ T a0 or
de,, do,, 1 dg,, 6U A 0oU,
&—E““ﬁmﬁw")‘ T
daeo 60'99 1 60'09 1 aUg aU,
Roo =3¢ G( ar g M| TG G A

R T T I T

A known one-spatial dimensional problem is considered in order to measure the
validity of these equations. The problem consists of a circular cylindrical cavity in an
infinite elastic solid Subjected to a uniform radial load applied to the cavity wall. It is
readily seen that the unknown dependent variables involved here are o,,, g¢¢ and U,
(6,6 = Ug = 0) which are the functions of r only. Also from equation (30), when x and z
are relaced by r and 6, it is seen that the only possible G’s are Gf = +[(A+2u)/p]*/2
It follows from equations (38) through (43) that the characteristic equations for this problem
are

do',.o G(ao'ro 1 60',.0 ) aU(, 1 6U,

y) d
de,,— pG dU, —(0'00 0t 0GE 3 U) ’

along dr/dt = G, where
2
Gf = i\/ (———/H-p a

%_A+2y 1_4;1(/14—;1)& dt
dog A A+2u r dog
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along dr = 0 which are indecd the equations (18) and (19) on page 161 in Chou and
Koemg's paper [12]. :

A two-spatial dimensional problem, for instance, is a circular cylindrical cavity sub-
jected to a line load. Miklowitz [13] solved this problem by the transform techniques.
The problem, when attempted by the theory of characteristics, seems to lead itself to the
cylindrical characteristics equations.

9. CONCLUSIONS AND DISCUSSION

A method has been established by which differential equations are derived governing
the propagation of discontinuities along the bicharacteristic curves. These differential
equations are known as the characteristic equations. This method which makes use of
Hadamard’s kinematical discontinuity relations, offers an alternative approach to the
conventional directional derivative approach.

The characteristic equations were derived with reference first to Cartesian and then
to cylindrical coordinate systems for a linear elastic, isotropic, and homogeneous material
where plane deformation is prevalent. The applicability of these equations is confined to
cases where discontinuities may occur in the derivatives of the velocities and stresses,
while these variables remaim continuous.

The derived characteristic equations for two-spatial dimensions were shown to be
applicable equally well to one-spatial dimensional wave problems. Also, the Cartesian
characteristic equations, derived here, are in complete agreeement with Clifton’s [2]
equations derived by the conventional approach.
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AGcrpakT—IIpeacrasnsercs MeTOd YTOUYHSIOUIMI TEOPHIO XapaKTEPUCTHK IS y4yeTa YOPYrux BOJIH B
ZIBY TPOCTPAHCTBEHHbIX pa3zmepax. OH JaeT BO3IMOXHOCTh NPUMEHHTH paboTy Anxamapa, Kacarouieics
TIOBEPXHOCTEH pa3pbl Ba B 3aBUCHMMBbIX MEPEMEHHBIX ¥ UX HPOMUIBOIHBIX.

[IpuBOOMTCA MOAECIb NOBEPXHOCTU PACAPOCTPAHEHUS B NHUHECHHOM, ynpyroi, uiotponHo u ynpyrof
cpene. CKOPOCTH M HANpsXeHWs MAaTePHANbHBIX YAcTHIl pa3pbiBHBI B CBOMX HMEPBbIX YACTHBIX
TIPOM3BOAHBIX, TONEPEK MOBEPXHOCTH pacipocTpanenus. Ucnonb3yercs npeobpa3opanue 3TOi Moaesu,
Grarogapss KOTOPOMY TNPHMEHAIOTCS COOTBETCTBYIOUIME 3aBMCUMOCTHM LIS Pa3pbiBa, BbITEKAIOILME W3
Teopu¥ Ajamapa, nis IMHAMHYECKUX ypaBHeHwi noss. [TpuMeHeHne 3THX pe3ynsTaToR NpeodpasoBaHus
B CHCTEMY HEOOXOAMMBIX TWHAMHYECKUX YCIIOBHI MPUBOAMT 3ATEM K BLIBOJY YPABHEHWI XapPaKTEPHCTHUK
18 ABY NPOCTPAHCTBEHHBIX H3MEPEHHH.



